回归问题和分类问题区别如下:
1、输出不同:分类输出的值是离散的,回归输出的值是连续的;(但不是严格意义上数学的连续和离散)分类输出物体的所属类别,回归输出物体的值;分类输出的值是定性的,回归输出的值是定量的;
2、目的不同:分类是为了寻找决策边界,回归是为了找到**拟合。
3、结果不同:分类问题结果对就是对,错就是错;回归问题是对真实值的一种逼近预测。
4、分类问题应用非常广泛。
通常是建立在回归之上,分类的**一层通常要使用softmax函数进行判断其所属类别。分类并没有逼近的概念,最终正确结果只有一个,错误的就是错误的,不会有相近的概念。例如判断一幅**上的动物是一只猫还是一只狗,判断明天天气的阴晴,判断零件的合格与不合格等等。
5、回归问题通常是用来预测一个值。
另外,回归分析用在神经**上,其最上层是不需要加上softmax函数的,而是直接对前一层累加即可。一个比较常见的回归算法是线性回归算法(LR)。如预测房价、股票的成交额、未来的天气情况等。
分类是指一类问题,而回归是一类工具。分类的目的在于给对象按照其类别打上相应的标签再分门别类,而回归则是根据样本研究其两个(或多个)变量之间的依存关系,是对于其趋势的一个分析预测。
分类的标签如果是表示(离散的)有排序关系的类别时,比如说“好”、“较好”、“一般”这样的时候,也可以用回归来处理。
但是如果标签是纯粹的分类,比如说**中的“喜剧”、“动作”、“剧情”这样的无排序关系的标签时,就很难用回归去处理了。而且,分类中还存在着“多分类”的问题,也就是一个对象可能有多个标签的情况,这就更复杂了。而同时,回归所能做的也并非只有分类,也可以用来做预测等其他问题。所以,回归和分类的区别并非只有输出的“定性”与“定量”那么简单,应该说两者属于不同的范畴。
想更多了解数据挖挖掘中分类和回归区别,推荐上CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。
真正理解商业思维,项目思维,能够遇到问题解决问题。
分类 [ fēn lèi ] 生词本基本释义 详细释义[ fēn lèi ]根据事物的特点分别归类:图书~法。把文件~存档。
回归 [ huí guī ] 生词本基本释义 详细释义[ huí guī ]1.后退。
2.回到;返回:~大自然。**、澳门已经~**。
区分和分类:数据区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较;而分类则是找出描述和区分数据类或概念的模型,以便能够使用模型对未知类标号的样例进行预测。特征化和聚类:数据特征化是目标类数据的一般特性或特征的汇总,即在进行数据特征化时很清楚特征化的这些数据的特点是什么;而聚类则只是分析数据对象,按照“**化类内相似度、最小化类间相似度”的原则进行聚类或分组。
分类在**点时已经说过;回归主要是建立连续值的函数模型,回归主要用来预测缺失的或难以获得的数值数据值,而不是离散的类标号,同时回归也包含基于可用数据的分布趋势识别。
随机森林分类和回归区别如下。1、当因变量Y是分类变量时,是分类,当因变量Y是连续变量时,是回归。
2、默认mtry是p/3而不是p1/2,其中p表示预测变量数,默认节点大小为5而不是1。
(一)相关分析与回归分析的联系 相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。 (二)相关分析与回归分析的区别 1.相关分析中涉及的变量不存在自变量和因变量的划分问题,变量之间的关系是对等的;而在回归分析中,则必须根据研究对象的性质和研究分析的目的,对变量进行自变量和因变量的划分。因此,在回归分析中,变量之间的关系是不对等的。
2.在相关分析中所有的变量都必须是随机变量;而在回归分析中,自变量是确定的,因变量才是随机的,即将自变量的给定值代入回归方程后,所得到的因变量的估计值不是**确定的,而会表现出一定的随机波动性。 3.相关分析主要是通过一个指标即相关系数来反映变量之间相关程度的大小,由于变量之间是对等的,因此相关系数是**确定的。而在回归分析中,对于互为因果的两个变量 (如人的身高与体重,商品的价格与需求量),则有可能存在多个回归方程。